DCATT Controls Software Overview

Gary Mosier NASA/GSFC August 17, 1998

Control System Architecture

- Client/Server Architecture Sun workstation as Client, PCs and Mac as Servers
- User generally interfaces with system via Matlab GUI on Sun
 - Optionally, procedures may be written in Matlab language to perform experiments
- Executive calls functions that are to be performed by remote subsystems
 - Functions initiate actions, query status of hardware, abort actions
 - Functions pass data
- Subsystems perform actions and return status
 - Subsystems also provide safety limits
- Subsystems can be controlled locally as well
- Communication is across ethernet using TCP/IP...
 - LabView and LabWindows running as TCP servers on PC's
 - Unix sockets on Sun accessing remote TCP ports
 - *TBD* running as TCP server on Macintosh (DM computer)
- Large data files are written directly to disk
 - Accessed via NFS

Server Architecture

Client Architecture

DCATT Executive Overall Flow

Initialization Panel

- Turns on system, sets optics
 - Sources
 - Simulator vs. telescope
 - Model vs. hardware vs. both
- Gateway to control functions
 - Align
 - Phase
 - Fine phase
 - Calibrate
 - Score

Aberrate Panel

- Define a problem to be solved
 - Initial conditions set in terms of 's or absolutes
- Some or all DOFs
 - OTA, DM, Simulator

Coarse Align Panel

- Control panel
 - Get here by pressing "Coarse align" on Init panel
 - First panel shows starting point image
 - Number boxes show tilt and focus control as implemented

Coarse Align Options Panels

- Selected from menu on "control" panel
- Set bounds, gains for alignment and focussing operations

Fine Phasing Control Panel

- Get here from "Init" panel
- "Data acquisition" button opens panels that specify data to be taken
- "Select default" allows selection of previously taken data sets
- "WFC" button opens wavefront sensing and wavefront control panels
 - Run after DAQ or on archived data

Image DAQ Control Panel

- Specify conditions for each image in a data run
- Data stored together for WFS/WFC processing
- Full data run performed after all pictures specified

DAQ Monitor Panel

• Reports progress and displays data window as data is collected

WFS Control Panel

- Wavefront sensing parameters are specified
 - Does not drive hardware
- Progress is monitored as phase retrieval computations are performed
- Second window comes up during processing showing image match
- When done, ready to compute actuator commands (next panel)
 - "Go to WFC"

WFC Control Panel

- Sets options for WF control (segments only, dm only, etc)
- Displays predicted corrected pupil
- Displays predicted DM and segment control actuations
- Commands optics to move
 - Repeat images, WFS to find out how well it really did

Development Schedule

- Build 1 October 98
 - EXECUTIVE
 - SM
 - TSM
 - DFS
 - DM
 - Misc. Devices
- Build 2 April 98
 - OTA
- Build 3 TBD
 - FSM
 - MASPAR
 - general cleanup (address "feature-it is", robustness)
- Additional builds as necessary for subsequent phases of experiment